OTT Movie Launching Strategy

with Movie-Country Relatedness



2023 한국언론학회 봄철 정기학술대회
미디어 경제·경영 연구회

2023-05-19



Changjun Lee

Hanyang University

Dep. Media & Social Informatics

 changjunlee.com

Research Background


Global OTT Platforms and Cultural Barriers

  • Emergence of global OTTs: Netflix, Disney+, etc.

  • Lowering cultural barriers in media consumption

  • Examples:

    • Korean TV shows: Squid Game, Extraordinary Attorney Woo (CNN 2022)

    • US-based show: Strange Things (Reporter 2022)

  • However, Global mega-hits still rare, often a matter of serendipity

Research Background


Local Media Channels and OTTs - Challenges

  • Global OTTs threaten local media channels

  • Local OTTs emerge to counter competition

  • Main challenges for local OTTs:

    1. Producing culturally appropriate content with global mega-hit potential

    2. Renting overseas content that appeals to local users (Wang and Jung 2023)

Research Background


Strategies for Local OTT Success

  • Addressing purchasing priority and cost-effectiveness

  • Creating high-quality content with worldwide resonance (Kim 2022)

  • Catering to local user preferences

  • Latecomer local OTT operators need additional strategies

Problem Description


  • Previous research on OTT strategies (Park and Kwon 2019)

    • Localization, Partnership, Content differentiation, Revenue enhancement, Service optimization
  • Local OTT providers adopt a multi-faceted approach

    • Assessing demand and establishing partnerships (Wang and Jung 2023)

      • Acquiring content similar in genre and quality to Netflix and Disney+
    • Developing local content repositories using local/regional languages (Sharma and Lulandala 2023)

      • Forming strategic collaborations with: Mobile network companies, Financial institutions, Technology companies


Research Gap

  • Limited understanding of OTT launching strategies considering:

    • Compatibility between movies and countries
  • Need for more research on country-specific content and strategies

Research Questions & Goal



Research Questions

  • How do content and country relationships impact popularity?

  • How can accurate measurements of relatedness improve content consumption patterns?


Research Goal

  • Propose a method to measure movie-country relatedness density

  • Test the importance of the movie-country relatedness in predicting movie popularity in specific countries

  • Develop a local OTT strategy based on movie-country relatedness

Theoretical Foundations



The Complexity of the Cultural Industry

  • Cultural goods is difficult to express as utility function (Throsby 2001)

  • Cultural industry sectors: Media, Fashionable consumer goods & Services, Creative professions, Collective cultural consumption institutions (Scott 2004)


Cultural Sensitivity in International Trade

  • Content carries cultural messages (Fejes 1981)

  • Protection of local content from other markets

  • Cultural goods deeply rooted in their place of origin (Demont‐Heinrich 2011)

  • Globalization and multicultural companies impact the cultural economy

Theoretical Foundations



Cultural Similarity and Content-Country Compatibility


Need for a special content-country compatibility beyond cultural differences

Theoretical Foundations


Product-Country Compatibility

  • Considers cultural, economic, and regulatory conditions impacts a product’s success in a target market (Asheim and Isaksen 2002)

  • Compatibility evaluated through relatedness (Jun et al. 2020)

    • Product, Importer, and Exporter relatedness

Theoretical Foundations


The Importance of Product-Country Compatibility

  • Widely recognized in international business and economic geography (Cavusgil et al. 2014)

  • Culturally aligned products more likely to succeed

  • Compatibility with economic and regulatory environment leads to profitability


Applying Product-Country Compatibility to Content

  • Adapting the concept for content-country compatibility

  • Assessing cultural, economic, and regulatory fit for content in target countries

  • Potential to improve the success of content in foreign markets

  • Content-Country Compatibility

    • Adaptation of product-country compatibility for movies and TV shows

    • Considers cultural, economic, and regulatory conditions

    • Impacts success and profitability of content in target markets

Theoretical Foundations



Factors Influencing Content-Country Compatibility

  • Cultural factors: language, humor, storytelling style

  • Economic factors: disposable income, streaming service accessibility

  • Regulatory factors: censorship laws, import/export regulations

  • Complex interplay of factors in evaluating potential success


In sum

  • Content-country compatibility crucial for international expansion

  • Align content with target country’s cultural, economic, and regulatory conditions

  • Increases likelihood of success in international business endeavors

A New Way of Measuring Content-Movie Compatibility




eq(1)

\[ RD_{r,i} = \frac{∑_{j∈r, j≠i}∅_{i,j} }{∑_{j≠i}∅_{i,j}}×100 \]


  • Use relatedness density index to measure content-movie compatibility

  • \(RD_{i,j}\) denotes the related density of region \(r\) to content \(i\)

  • \(∅_{i,j}\) denotes the relatedness between content \(i\) and \(j\) measured by considering the co-occurrence of top-tiered lists

Hypothesis



H1

Movies and TV shows exhibit varying degrees of compatibility with different countries, and this compatibility predicts a given country’s likelihood of including that content in its top 20 list


H2

Despite the importance of content–country compatibility, global mega-hit content that achieves widespread popularity regardless of its compatibility with a particular country may occasionally emerge. This ubiquity of popular content predicts a given country’s likelihood of including that content in its top 20 list.

Methods


Overview

  • Data source: Flixpatrol’s monthly top 20 movies in 80 countries from January to December 2021

  • Final sample: 1,939 movies (1,861,440 observations)

  • Focusing on Netflix as a global OTT service provider

  • Dependent variable: \(ENT-TOP20_{c,m,(t+1)}\) - new entry of a movie \(m\) in a country \(c\)’s top 20 list in the period \(t+1\)

  • Independent variables:

    • Country–movie relatedness density at period t: \(∅_{c,m,t}\)

    • Movie ubiquity: \(U_{m,t}\)

  • Covariates:

    • Movie-specific fixed effects \(Z_{m,t}\): Netflix Original status, production country, genre, Rotten Tomatoes score, and IMDB score
  • Model: Account for factors influencing a movie’s inclusion in a country’s top 20 list

Methods


Data at a glance


cid

mid

Month

entry

rel_density

Titles

IMDB

Rotten

mov_ubq

top20

genre_n

prod_ctry_n

netf_org

c1

m15

3

0

0.1270

1939

5.9

78

0.025

0

Etc

Etc

0

c2

m15

3

0

0.1263

1939

5.9

78

0.025

0

Etc

Etc

0

c3

m15

3

0

0.1543

1939

5.9

78

0.025

0

Etc

Etc

0

c4

m15

3

0

0.1153

1939

5.9

78

0.025

0

Etc

Etc

0

c5

m15

3

0

0.3119

1939

5.9

78

0.025

0

Etc

Etc

0

c6

m15

3

0

0.1118

1939

5.9

78

0.025

0

Etc

Etc

0

c7

m15

3

0

0.1306

1939

5.9

78

0.025

0

Etc

Etc

0

c8

m15

3

0

0.1796

1939

5.9

78

0.025

0

Etc

Etc

0

c9

m15

3

0

0.1463

1939

5.9

78

0.025

0

Etc

Etc

0

c10

m15

3

0

0.1230

1939

5.9

78

0.025

0

Etc

Etc

0

c11

m15

3

0

0.1209

1939

5.9

78

0.025

0

Etc

Etc

0

c12

m15

3

0

0.1214

1939

5.9

78

0.025

0

Etc

Etc

0

c13

m15

3

0

0.1694

1939

5.9

78

0.025

0

Etc

Etc

0

c14

m15

3

0

0.2612

1939

5.9

78

0.025

0

Etc

Etc

0

c15

m15

3

0

0.1982

1939

5.9

78

0.025

0

Etc

Etc

0

c16

m15

3

0

0.1171

1939

5.9

78

0.025

0

Etc

Etc

0

c17

m15

3

0

0.1246

1939

5.9

78

0.025

0

Etc

Etc

0

c18

m15

3

0

0.1692

1939

5.9

78

0.025

0

Etc

Etc

0

c19

m15

3

0

0.2191

1939

5.9

78

0.025

0

Etc

Etc

0

c20

m15

3

0

0.1540

1939

5.9

78

0.025

0

Etc

Etc

0

c21

m15

3

0

0.1464

1939

5.9

78

0.025

0

Etc

Etc

0

c22

m15

3

1

0.4379

1939

5.9

78

0.025

1

Etc

Etc

0

c23

m15

3

0

0.1185

1939

5.9

78

0.025

0

Etc

Etc

0

c24

m15

3

0

0.1156

1939

5.9

78

0.025

0

Etc

Etc

0

c25

m15

3

0

0.1156

1939

5.9

78

0.025

0

Etc

Etc

0

c26

m15

3

0

0.1687

1939

5.9

78

0.025

0

Etc

Etc

0

c27

m15

3

0

0.1540

1939

5.9

78

0.025

0

Etc

Etc

0

c28

m15

3

0

0.1000

1939

5.9

78

0.025

0

Etc

Etc

0

c29

m15

3

0

0.1917

1939

5.9

78

0.025

0

Etc

Etc

0

c30

m15

3

0

0.1835

1939

5.9

78

0.025

0

Etc

Etc

0

c31

m15

3

0

0.1799

1939

5.9

78

0.025

0

Etc

Etc

0

c32

m15

3

0

0.0789

1939

5.9

78

0.025

0

Etc

Etc

0

c33

m15

3

0

0.1296

1939

5.9

78

0.025

0

Etc

Etc

0

c34

m15

3

0

0.1398

1939

5.9

78

0.025

0

Etc

Etc

0

c35

m15

3

0

0.1630

1939

5.9

78

0.025

0

Etc

Etc

0

c36

m15

3

0

0.1261

1939

5.9

78

0.025

0

Etc

Etc

0

c37

m15

3

0

0.1688

1939

5.9

78

0.025

0

Etc

Etc

0

c38

m15

3

0

0.2059

1939

5.9

78

0.025

0

Etc

Etc

0

c39

m15

3

0

0.1233

1939

5.9

78

0.025

0

Etc

Etc

0

c40

m15

3

0

0.1111

1939

5.9

78

0.025

0

Etc

Etc

0

c41

m15

3

0

0.1672

1939

5.9

78

0.025

0

Etc

Etc

0

c42

m15

3

0

0.1404

1939

5.9

78

0.025

0

Etc

Etc

0

c43

m15

3

0

0.1136

1939

5.9

78

0.025

0

Etc

Etc

0

c44

m15

3

0

0.1241

1939

5.9

78

0.025

0

Etc

Etc

0

c45

m15

3

0

0.1950

1939

5.9

78

0.025

0

Etc

Etc

0

c46

m15

3

0

0.1222

1939

5.9

78

0.025

0

Etc

Etc

0

c47

m15

3

0

0.1140

1939

5.9

78

0.025

0

Etc

Etc

0

c48

m15

3

0

0.1258

1939

5.9

78

0.025

0

Etc

Etc

0

c49

m15

3

0

0.1204

1939

5.9

78

0.025

0

Etc

Etc

0

c50

m15

3

0

0.1151

1939

5.9

78

0.025

0

Etc

Etc

0

c51

m15

3

0

0.1882

1939

5.9

78

0.025

0

Etc

Etc

0

c52

m15

3

0

0.1754

1939

5.9

78

0.025

0

Etc

Etc

0

c53

m15

3

0

0.1378

1939

5.9

78

0.025

0

Etc

Etc

0

c54

m15

3

0

0.2130

1939

5.9

78

0.025

0

Etc

Etc

0

c55

m15

3

0

0.1080

1939

5.9

78

0.025

0

Etc

Etc

0

c56

m15

3

0

0.1263

1939

5.9

78

0.025

0

Etc

Etc

0

c57

m15

3

0

0.1897

1939

5.9

78

0.025

0

Etc

Etc

0

c58

m15

3

0

0.1332

1939

5.9

78

0.025

0

Etc

Etc

0

c59

m15

3

0

0.1585

1939

5.9

78

0.025

0

Etc

Etc

0

c60

m15

3

0

0.1833

1939

5.9

78

0.025

0

Etc

Etc

0

c61

m15

3

0

0.1689

1939

5.9

78

0.025

0

Etc

Etc

0

c62

m15

3

0

0.1324

1939

5.9

78

0.025

0

Etc

Etc

0

c63

m15

3

0

0.1908

1939

5.9

78

0.025

0

Etc

Etc

0

c64

m15

3

0

0.1266

1939

5.9

78

0.025

0

Etc

Etc

0

c65

m15

3

0

0.2060

1939

5.9

78

0.025

0

Etc

Etc

0

c66

m15

3

0

0.1905

1939

5.9

78

0.025

0

Etc

Etc

0

c67

m15

3

0

0.1013

1939

5.9

78

0.025

0

Etc

Etc

0

c68

m15

3

0

0.1776

1939

5.9

78

0.025

0

Etc

Etc

0

c69

m15

3

0

0.1318

1939

5.9

78

0.025

0

Etc

Etc

0

c70

m15

3

1

0.7204

1939

5.9

78

0.025

1

Etc

Etc

0

c71

m15

3

0

0.1292

1939

5.9

78

0.025

0

Etc

Etc

0

c72

m15

3

0

0.1203

1939

5.9

78

0.025

0

Etc

Etc

0

c73

m15

3

0

0.1377

1939

5.9

78

0.025

0

Etc

Etc

0

c74

m15

3

0

0.1966

1939

5.9

78

0.025

0

Etc

Etc

0

c75

m15

3

0

0.1256

1939

5.9

78

0.025

0

Etc

Etc

0

c76

m15

3

0

0.1461

1939

5.9

78

0.025

0

Etc

Etc

0

c77

m15

3

0

0.1598

1939

5.9

78

0.025

0

Etc

Etc

0

c78

m15

3

0

0.1376

1939

5.9

78

0.025

0

Etc

Etc

0

c79

m15

3

0

0.1283

1939

5.9

78

0.025

0

Etc

Etc

0

c80

m15

3

0

0.1151

1939

5.9

78

0.025

0

Etc

Etc

0

c1

m15

4

0

0.1270

1939

5.9

78

0.000

0

Etc

Etc

0

c2

m15

4

0

0.1263

1939

5.9

78

0.000

0

Etc

Etc

0

c3

m15

4

0

0.1543

1939

5.9

78

0.000

0

Etc

Etc

0

c4

m15

4

0

0.1153

1939

5.9

78

0.000

0

Etc

Etc

0

c5

m15

4

0

0.3119

1939

5.9

78

0.000

0

Etc

Etc

0

c6

m15

4

0

0.1118

1939

5.9

78

0.000

0

Etc

Etc

0

c7

m15

4

0

0.1306

1939

5.9

78

0.000

0

Etc

Etc

0

c8

m15

4

0

0.1796

1939

5.9

78

0.000

0

Etc

Etc

0

c9

m15

4

0

0.1463

1939

5.9

78

0.000

0

Etc

Etc

0

c10

m15

4

0

0.1230

1939

5.9

78

0.000

0

Etc

Etc

0

c11

m15

4

0

0.1209

1939

5.9

78

0.000

0

Etc

Etc

0

c12

m15

4

0

0.1214

1939

5.9

78

0.000

0

Etc

Etc

0

c13

m15

4

0

0.1694

1939

5.9

78

0.000

0

Etc

Etc

0

c14

m15

4

0

0.2612

1939

5.9

78

0.000

0

Etc

Etc

0

c15

m15

4

0

0.1982

1939

5.9

78

0.000

0

Etc

Etc

0

c16

m15

4

0

0.1171

1939

5.9

78

0.000

0

Etc

Etc

0

c17

m15

4

0

0.1246

1939

5.9

78

0.000

0

Etc

Etc

0

c18

m15

4

0

0.1692

1939

5.9

78

0.000

0

Etc

Etc

0

c19

m15

4

0

0.2191

1939

5.9

78

0.000

0

Etc

Etc

0

c20

m15

4

0

0.1540

1939

5.9

78

0.000

0

Etc

Etc

0

c21

m15

4

0

0.1464

1939

5.9

78

0.000

0

Etc

Etc

0

c22

m15

4

0

0.4379

1939

5.9

78

0.000

0

Etc

Etc

0

c23

m15

4

0

0.1185

1939

5.9

78

0.000

0

Etc

Etc

0

c24

m15

4

0

0.1156

1939

5.9

78

0.000

0

Etc

Etc

0

c25

m15

4

0

0.1156

1939

5.9

78

0.000

0

Etc

Etc

0

c26

m15

4

0

0.1687

1939

5.9

78

0.000

0

Etc

Etc

0

c27

m15

4

0

0.1540

1939

5.9

78

0.000

0

Etc

Etc

0

c28

m15

4

0

0.1000

1939

5.9

78

0.000

0

Etc

Etc

0

c29

m15

4

0

0.1917

1939

5.9

78

0.000

0

Etc

Etc

0

c30

m15

4

0

0.1835

1939

5.9

78

0.000

0

Etc

Etc

0

c31

m15

4

0

0.1799

1939

5.9

78

0.000

0

Etc

Etc

0

c32

m15

4

0

0.0789

1939

5.9

78

0.000

0

Etc

Etc

0

c33

m15

4

0

0.1296

1939

5.9

78

0.000

0

Etc

Etc

0

c34

m15

4

0

0.1398

1939

5.9

78

0.000

0

Etc

Etc

0

c35

m15

4

0

0.1630

1939

5.9

78

0.000

0

Etc

Etc

0

c36

m15

4

0

0.1261

1939

5.9

78

0.000

0

Etc

Etc

0

c37

m15

4

0

0.1688

1939

5.9

78

0.000

0

Etc

Etc

0

c38

m15

4

0

0.2059

1939

5.9

78

0.000

0

Etc

Etc

0

c39

m15

4

0

0.1233

1939

5.9

78

0.000

0

Etc

Etc

0

c40

m15

4

0

0.1111

1939

5.9

78

0.000

0

Etc

Etc

0

c41

m15

4

0

0.1672

1939

5.9

78

0.000

0

Etc

Etc

0

c42

m15

4

0

0.1404

1939

5.9

78

0.000

0

Etc

Etc

0

c43

m15

4

0

0.1136

1939

5.9

78

0.000

0

Etc

Etc

0

c44

m15

4

0

0.1241

1939

5.9

78

0.000

0

Etc

Etc

0

c45

m15

4

0

0.1950

1939

5.9

78

0.000

0

Etc

Etc

0

c46

m15

4

0

0.1222

1939

5.9

78

0.000

0

Etc

Etc

0

c47

m15

4

0

0.1140

1939

5.9

78

0.000

0

Etc

Etc

0

c48

m15

4

0

0.1258

1939

5.9

78

0.000

0

Etc

Etc

0

c49

m15

4

0

0.1204

1939

5.9

78

0.000

0

Etc

Etc

0

c50

m15

4

0

0.1151

1939

5.9

78

0.000

0

Etc

Etc

0

c51

m15

4

0

0.1882

1939

5.9

78

0.000

0

Etc

Etc

0

c52

m15

4

0

0.1754

1939

5.9

78

0.000

0

Etc

Etc

0

c53

m15

4

0

0.1378

1939

5.9

78

0.000

0

Etc

Etc

0

c54

m15

4

0

0.2130

1939

5.9

78

0.000

0

Etc

Etc

0

c55

m15

4

0

0.1080

1939

5.9

78

0.000

0

Etc

Etc

0

c56

m15

4

0

0.1263

1939

5.9

78

0.000

0

Etc

Etc

0

c57

m15

4

0

0.1897

1939

5.9

78

0.000

0

Etc

Etc

0

c58

m15

4

0

0.1332

1939

5.9

78

0.000

0

Etc

Etc

0

c59

m15

4

0

0.1585

1939

5.9

78

0.000

0

Etc

Etc

0

c60

m15

4

0

0.1833

1939

5.9

78

0.000

0

Etc

Etc

0

c61

m15

4

0

0.1689

1939

5.9

78

0.000

0

Etc

Etc

0

c62

m15

4

0

0.1324

1939

5.9

78

0.000

0

Etc

Etc

0

c63

m15

4

0

0.1908

1939

5.9

78

0.000

0

Etc

Etc

0

c64

m15

4

0

0.1266

1939

5.9

78

0.000

0

Etc

Etc

0

c65

m15

4

0

0.2060

1939

5.9

78

0.000

0

Etc

Etc

0

c66

m15

4

0

0.1905

1939

5.9

78

0.000

0

Etc

Etc

0

c67

m15

4

0

0.1013

1939

5.9

78

0.000

0

Etc

Etc

0

c68

m15

4

0

0.1776

1939

5.9

78

0.000

0

Etc

Etc

0

c69

m15

4

0

0.1318

1939

5.9

78

0.000

0

Etc

Etc

0

c70

m15

4

0

0.7204

1939

5.9

78

0.000

0

Etc

Etc

0

c71

m15

4

0

0.1292

1939

5.9

78

0.000

0

Etc

Etc

0

c72

m15

4

0

0.1203

1939

5.9

78

0.000

0

Etc

Etc

0

c73

m15

4

0

0.1377

1939

5.9

78

0.000

0

Etc

Etc

0

c74

m15

4

0

0.1966

1939

5.9

78

0.000

0

Etc

Etc

0

c75

m15

4

0

0.1256

1939

5.9

78

0.000

0

Etc

Etc

0

c76

m15

4

0

0.1461

1939

5.9

78

0.000

0

Etc

Etc

0

c77

m15

4

0

0.1598

1939

5.9

78

0.000

0

Etc

Etc

0

c78

m15

4

0

0.1376

1939

5.9

78

0.000

0

Etc

Etc

0

c79

m15

4

0

0.1283

1939

5.9

78

0.000

0

Etc

Etc

0

c80

m15

4

0

0.1151

1939

5.9

78

0.000

0

Etc

Etc

0

Descriptive Statistics


vars

levels

stats

cid

80 unique values

mid

1939 unique values

top20

0

1688923 (99.0%)

1

17397 (1.0%)

entry

0

1690759 (99.1%)

1

15561 (0.9%)

netf_org

0

1487200 (87.2%)

1

219120 (12.8%)

rel_density

Mean ± SD

0.2 ± 0.2

mov_ubq

Mean ± SD

0.0 ± 0.1

IMDB

Mean ± SD

6.3 ± 1.1

Rotten

Mean ± SD

53.6 ± 25.9

genre_n

Action

196240 (11.5%)

Adventure

44880 (2.6%)

Animated

118800 (7.0%)

Comedy

293920 (17.2%)

Crime

66880 (3.9%)

Documentary

39600 (2.3%)

Drama

190080 (11.1%)

Etc

438240 (25.7%)

Romance

81840 (4.8%)

Science Fiction

86240 (5.1%)

Thriller

149600 (8.8%)

prod_ctry_n

Etc

478720 (28.1%)

France

51040 (3.0%)

Germany

24640 (1.4%)

India

45760 (2.7%)

Japan

43120 (2.5%)

Nigeria

29920 (1.8%)

South Korea

41360 (2.4%)

Spain

27280 (1.6%)

United Kingdom

75680 (4.4%)

United States

888800 (52.1%)

Month

2

155120 (9.1%)

3

155120 (9.1%)

4

155120 (9.1%)

5

155120 (9.1%)

6

155120 (9.1%)

7

155120 (9.1%)

8

155120 (9.1%)

9

155120 (9.1%)

10

155120 (9.1%)

11

155120 (9.1%)

12

155120 (9.1%)

  • Variables in the study:

    • TOP20 Dummy = 1: 1.0%

    • Entry Dummy = 1: 0.9%

    • Netflix Original: 12.8%

    • Related Density: mean = 0.2, sd = 0.2

    • Movie Ubiquity: mean = 0.0, sd = 0.1

    • Month in 2021: each month has 9.1% of the total sample

Descriptive Statistics by Entry Status


vars

levels

0 (N=1690759)

1 (N=15561)

p

rel_density

Mean ± SD

0.2 ± 0.2

0.5 ± 0.2

<.001

mov_ubq

Mean ± SD

0.0 ± 0.0

0.4 ± 0.4

<.001

IMDB

Mean ± SD

6.4 ± 1.1

6.3 ± 1.0

<.001

Rotten

Mean ± SD

53.6 ± 25.9

53.6 ± 26.2

.856

netf_org

0

1478616 (87.5%)

8584 (55.2%)

<.001

1

212143 (12.5%)

6977 (44.8%)

genre_n

Action

194049 (11.5%)

2191 (14.1%)

<.001

Adventure

44209 (2.6%)

671 (4.3%)

Animated

117181 (6.9%)

1619 (10.4%)

Comedy

291354 (17.2%)

2566 (16.5%)

Crime

66324 (3.9%)

556 (3.6%)

Documentary

39272 (2.3%)

328 (2.1%)

Drama

188705 (11.2%)

1375 (8.8%)

Etc

435456 (25.8%)

2784 (17.9%)

Romance

80986 (4.8%)

854 (5.5%)

Science Fiction

85354 (5%)

886 (5.7%)

Thriller

147869 (8.7%)

1731 (11.1%)

prod_ctry_n

Etc

476365 (28.2%)

2355 (15.1%)

<.001

France

50398 (3%)

642 (4.1%)

Germany

24273 (1.4%)

367 (2.4%)

India

45511 (2.7%)

249 (1.6%)

Japan

42856 (2.5%)

264 (1.7%)

Nigeria

29871 (1.8%)

49 (0.3%)

South Korea

41131 (2.4%)

229 (1.5%)

Spain

26914 (1.6%)

366 (2.4%)

United Kingdom

75066 (4.4%)

614 (3.9%)

United States

878374 (52%)

10426 (67%)

  • 1,706,320 observations, 15,561 (0.9%) movies newly entered top 20

  • Statistically significant differences (p < .001):

    • Related Density

    • Movie Ubiquity

    • Netflix Original

    • Genre and Producing Country proportions

  • No statistically significant differences:

    • IMDB Score

    • Rotten Tomatoes Score

Model


An econometric model we used to test our hypotheses



\[ TOP20_{c,m,(t+1)}=β_1 ∅{c,m,t}+β_2 U{m,t}+β_3 Z_{m,t}+ϵ_{c,m,t} \]



As TOP20 entry is binary, it is a Generalized Linear Model (GLM) that aims to examine the impact of country-movie relatedness density (∅), movie ubiquity (U), and other covariates (Z) on the entry of a movie into the top 20 list of a given country at period t+1.

  • Here, we use Logit as a link function for GLM

\[ P(TOP20=1) = \frac{1}{1 + e^{-f(x)} } \]

Results


vars

levels

0 (N=1690759)

1 (N=15561)

OR (multivariable)

rel_density

Mean ± SD

0.2 ± 0.2

0.5 ± 0.2

494.51 (458.15-533.75, p<.001)

mov_ubq

Mean ± SD

0.0 ± 0.0

0.4 ± 0.4

24815.68 (22008.67-27980.69, p<.001)

IMDB

Mean ± SD

6.4 ± 1.1

6.3 ± 1.0

1.09 (1.06-1.12, p<.001)

Rotten

Mean ± SD

53.6 ± 25.9

53.6 ± 26.2

1.00 (1.00-1.00, p<.001)

netf_org

0

1478616 (87.5%)

8584 (55.2%)

1

212143 (12.5%)

6977 (44.8%)

0.36 (0.34-0.39, p<.001)

genre_n

Action

194049 (11.5%)

2191 (14.1%)

Adventure

44209 (2.6%)

671 (4.3%)

1.22 (1.07-1.38, p=.003)

Animated

117181 (6.9%)

1619 (10.4%)

0.86 (0.77-0.95, p=.003)

Comedy

291354 (17.2%)

2566 (16.5%)

0.90 (0.82-0.98, p=.012)

Crime

66324 (3.9%)

556 (3.6%)

1.19 (1.05-1.34, p=.005)

Documentary

39272 (2.3%)

328 (2.1%)

1.77 (1.53-2.04, p<.001)

Drama

188705 (11.2%)

1375 (8.8%)

0.99 (0.90-1.08, p=.776)

Etc

435456 (25.8%)

2784 (17.9%)

1.10 (1.01-1.19, p=.021)

Romance

80986 (4.8%)

854 (5.5%)

1.04 (0.93-1.16, p=.502)

Science Fiction

85354 (5%)

886 (5.7%)

1.22 (1.09-1.35, p<.001)

Thriller

147869 (8.7%)

1731 (11.1%)

0.90 (0.81-0.99, p=.030)

prod_ctry_n

Etc

476365 (28.2%)

2355 (15.1%)

France

50398 (3%)

642 (4.1%)

1.53 (1.34-1.74, p<.001)

Germany

24273 (1.4%)

367 (2.4%)

1.30 (1.09-1.54, p=.003)

India

45511 (2.7%)

249 (1.6%)

2.12 (1.84-2.44, p<.001)

Japan

42856 (2.5%)

264 (1.7%)

1.78 (1.52-2.07, p<.001)

Nigeria

29871 (1.8%)

49 (0.3%)

0.64 (0.47-0.86, p=.003)

South Korea

41131 (2.4%)

229 (1.5%)

1.11 (0.91-1.36, p=.288)

Spain

26914 (1.6%)

366 (2.4%)

1.86 (1.56-2.21, p<.001)

United Kingdom

75066 (4.4%)

614 (3.9%)

1.07 (0.95-1.21, p=.281)

United States

878374 (52%)

10426 (67%)

1.61 (1.51-1.71, p<.001)

Month

2

153762 (9.1%)

1358 (8.7%)

3

153697 (9.1%)

1423 (9.1%)

1.28 (1.16-1.41, p<.001)

4

153768 (9.1%)

1352 (8.7%)

1.18 (1.07-1.31, p=.001)

5

153683 (9.1%)

1437 (9.2%)

1.09 (0.98-1.21, p=.107)

6

153745 (9.1%)

1375 (8.8%)

1.03 (0.93-1.15, p=.553)

7

153773 (9.1%)

1347 (8.7%)

0.92 (0.83-1.03, p=.141)

8

153598 (9.1%)

1522 (9.8%)

0.95 (0.85-1.05, p=.330)

9

153743 (9.1%)

1377 (8.8%)

0.79 (0.70-0.88, p<.001)

10

153655 (9.1%)

1465 (9.4%)

1.12 (1.01-1.24, p=.029)

11

153528 (9.1%)

1592 (10.2%)

0.99 (0.89-1.09, p=.783)

12

153807 (9.1%)

1313 (8.4%)

1.00 (0.90-1.11, p=.964)

Results



Key Findings

  • Related Density and Movie Ubiquity positively associated with dependent variable in all models

    • Suggests relatedness to other popular movies and worldwide popularity important for top 20 appearance
  • Other significant predictors in Model 2 & Model 3:

    • Positive: Higher IMDB score

    • Negative: Higher Rotten Tomatoes score

    • Netflix Original: Positive in Model 1, Negative in Model 3

    • Genre and Producing Country: Significant variation in coefficients

Discussion



Highlight

  • Related Density and Movie Ubiquity positively associated with top 20 list appearance

  • Hypotheses supported: Content-country compatibility and global popularity impact top 20 list inclusion

  • Other significant predictors: IMDB Score, Rotten Tomatoes Score, Netflix Original, Genre, Producing Country, Monthly F.E.

  • Findings suggest importance of considering country–movie related density for OTT movie launching strategy

Extension - OTT launching strategy


OTT Content Launching Strategy Map


  • X-axis: Country–movie Relatedness density

  • Y-axis: Movie Ubiquity

  • Quadrant 1: Low-risk, high-benefit section

    • High investment, high return potential due to global popularity
    • Suggested strategy: Local OTT providers focus on movies in Quadrant 1
  • Quadrant 2: High ubiquity, low related density

    • Moderate-risk option due to limited local appeal
  • Quadrant 4: Low ubiquity, high related density

    • Low-cost, low-profit, but potential for unexpected profits due to local user compatibility

Extension - OTT launching strategy


Country-Specific OTT Content Launching Maps: Argentina (December 2021)

  • Red dots: Top 20 content

  • Black dots: Not yet in top 20

  • Examples of famous movies with low compatibility: A Castle for Christmas, A Boy Called Christmas, Single All the Way

  • Examples of locally compatible, less known movies: I Feel Pretty, Waiting for the Hearse

Extension - OTT launching strategy


Future Plans


  • Robustness check


  • Explore more..

    • e.g.)

    • Explore


  • Wrapping up the results and find a target journal

Finalize this talk


Thanks for your attention


You can find this presentation here


Any questions & suggestions?



Changjun Lee

Hanyang University

Dep. Media & Social Informatics

 changjunlee.com


References


Abhijith. 2022. “OTT Full Form: Meaning, How Does It Work, Popular OTT Platforms in India, Price, and More.” Mysmartprice, November. https://www.mysmartprice.com/gear/ott-full-form-meaning-popular-ott-platforms/.
Asheim, B. T., and A. Isaksen. 2002. “Regional Innovation Systems: The Integration of Local ’Sticky’and Global ’Ubiquitous’ Knowledge.” The Journal of Technology Transfer 27: 77–86.
Cavusgil, S. T., G. Knight, J. R. Riesenberger, H. G. Rammal, and E. L. Rose. 2014. International Business. Pearson Australia.
CNN. 2022. ‘Extraordinary Attorney Woo’ Boosts Netflix Stock.” https://edition.cnn.com/2022/07/20/media/extraordinary-attorney-woo-netflix-stock-intl-hnk/index.html.
Demont‐Heinrich, C. 2011. “Cultural Imperialism Versus Globalization of Culture: Riding the Structure–Agency Dialectic in Global Communication and Media Studies.” Sociology Compass 5: 666–78.
Dwyer, T., Y. Shim, H. Lee, and J. Hutchinson. 2018. “Comparing Digital Media Industries in South Korea and Australia: The Case of Netflix Take-up.” International Journal of Communication 12: 20.
Fejes, F. 1981. “Media Imperialism: An Assessment.” Media, Culture & Society 3: 281–89.
Hausmann, R., and C. Hidalgo. 2010. “Country Diversification, Product Ubiquity, and Economic Divergence.”
Jang, M., D. Kim, and H. Baek. 2023. “How Do Global Audiences of TV Shows Take Shape?: Evidence from Netflix.” Applied Economics Letters 30: 285–91.
Jun, B., A. Alshamsi, J. Gao, and C. A. Hidalgo. 2020. “Bilateral Relatedness: Knowledge Diffusion and the Evolution of Bilateral Trade.” Journal of Evolutionary Economics 30: 247–77.
Kim, T. 2022. “Theorizing the Korean Wave| k-Culture Without ‘k-’? The Paradoxical Nature of Producing Korean Television Toward a Sustainable Korean Wave.” International Journal of Communication 17: 22.
Park, S., and Y. Kwon. 2019. “Research on the Relationship Between the Growth of OTT Service Market and the Change in the Structure of the Pay-TV Market.” Journal of Digital Convergence 17: 15–28.
Reporter, The Hollywood. 2022. ‘Stranger Things 4’ Sets All-Time Nielsen Streaming Record.” https://www.hollywoodreporter.com/tv/tv-news/stranger-things-4-all-time-nielsen-streaming-high-1235174960/.
Scott, A. J. 2004. “Cultural-Products Industries and Urban Economic Development: Prospects for Growth and Market Contestation in Global Context.” Urban Affairs Review 39: 461–90.
Sharma, K., and E. E. Lulandala. 2023. “OTT Platforms Resilience to COVID-19–a Study of Business Strategies and Consumer Media Consumption in India.” International Journal of Organizational Analysis 31: 63–90.
Throsby, D. 2001. Economics and Culture. Cambridge University Press.
Wang, S.-H., and Y. Jung. 2023. “Influential Factors in Domestic OTT Platforms’ Choice of Foreign Content in South Korea.” International Journal on Media Management, 1–27.